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Abstract: An ultrasonic wave propagating through a microscopically inhomogeneous medium, 
such as polycrystalline materials, is subject to scattering at the grain boundaries as well as other 
inhomogenities. The fraction of energy removed from the incident wave is responsible for 
important phenomenon like attenuation, dispersion, and background “noise" associated with a 
given ultrasonic inspection system. Quantitative knowledge of attenuation, phase velocity, and 
scattered wave field are extremely important for a reliable nondestructive evaluation of such 
materials. Expected propagation characteristics of ultrasonic waves in randomly oriented 
equiaxed grains are fairly well understood. But when the grains are elongated and/or 
preferentially oriented, the wave propagation constants exhibit anisotropic behavior. The present 
paper sheds more light on the effect of grain shape on the attenuation and dispersion of ultrasonic 
waves in polycrystals. Specifically, theoretical results are presented showing the effects of 
different grain aspect ratios. It is observed that for the same effective grain volume, grain 
elongation has smaller effect on attenuation. Although considerable attention has been given to 
the understanding of mean propagation characteristics of an ultrasonic beam, until recently, there 
have been relatively little efforts devoted towards rigorous treatments of backscattered signals 
from the material microstructure. In this paper, we also attempt to include some degree of 
multiple scattering in the calculation of the backscattered signals by developing a formalism that 
relates mean wave propagation characteristics to the noise. 
 
 
INTRODUCTION 
 
A polycrystalline material is composed of numerous discrete grains, each having a regular, 
crystalline atomic structure. The elastic properties of the grains are anisotropic and their 
crystallographic axes are oriented differently. When an acoustic wave propagates through such a 
polycrystalline aggregate, it is attenuated by scattering at the grain boundaries, with the value of 
this attenuation and the related shift in the propagation velocity depending on the size, shape, 
orientation distributions, and crystalline anisotropy of the grains. If the grains are equiaxed and 
randomly oriented, these propagation properties are independent of direction, but such is not the 
case when the grains are elongated and/or have preferred crystallographic orientation. Therefore, 
reliable ultrasonic testing of engineering alloy components require the knowledge of the 
anisotropies in the attenuation and velocities of ultrasonic waves due to preferred grain 
orientations and elongated shapes. 



 
The propagation of elastic waves in randomly oriented, equiaxed polycrystals has received 
considerable attention, with most recent contributions for the cubic materials being made by 
Hirsekorn [1,2] Stanke and Kino [3,4], Beltzer and Brauner [5], and Turner [6]. Stanke and Kino 
present their ``unified theory" based on the second order Keller approximation [7] and the use of 
a geometric autocorrelation function to describe the grain size distribution. Stanke and Kino 
argue that their approach is to be preferred because i) the unified theory more fully treats 
multiple scattering, ii) the unified theory avoids the high frequency oscillations which are 
coherent artifacts of the single-sized, spherical grains assumed by Hirsekorn, and iii) the unified 
theory correctly captures the high frequency “geometric regime” in which the Born 
approximation breaks down. The theoretical treatment of ultrasonic wave propagation in 
preferentially oriented grains is more limited. Hirsekorn has extended her theory to the case of 
preferred crystallographic orientation while retaining the assumption of spherical grain shape [8], 
and has performed numerical calculations for the case of stainless steel with fully aligned [001] 
axes [9]. Turner, on the other hand, derives the Dyson equation using anisotropic Green's 
functions to predict the mean ultrasonic field in macroscopically anisotropic medium [6]. He 
then proceeds to obtain the solution of the Dyson equation for the case of equiaxed grains with 
aligned [001] axes. 
 
Previously we have employed the formalism of Stanke and Kino [3,4] in [001] aligned stainless 
steel polycrystal to compute the mean attenuation and phase velocity of plane ultrasonic waves 
[10,11]. In this paper we revisit our earlier calculations for the case of elongated grains and focus 
our attention on the effect of grain shape on the mean propagation characteristics. Specifically, 
we consider two cases: 1) the [001] crystallographic axes are aligned with the z-axis of the 
laboratory coordinate system while remaining two axes are randomly oriented and 2) all the 
crystallographic axes are randomly oriented. In both cases, the crystallites have cubic symmetry 
and the grains are considered to be ellipsoidal with either their major or minor axis parallel to the 
z-direction of the laboratory coordinate system. Numerical results for the attenuation and phase 
velocity of longitudinal wave in these two polycrystals are presented here. The material 
properties of the two media are listed in Table 1.  
 
Until recently, there have been fewer attempts to develop rigorous expressions for backscattered 
signals. Margetan et. al. [21] formulated backscattered power using independent scatterer 
approximation. More recently, Rose [22] has developed a general formalism, based on Auld's 
[23] electro-mechanical reciprocity relations. Since this formalism is basically intractable, he 
then proceeded with the relevant calculations using Born and the single scattering 
approximations. We have, in the past [24], employed Rose's formalism to calculate the 
backscattered power due to preferentially oriented spherical and nonspherical grains.  In this 
paper, we describe a formalism that accounts for some degree of multiple scattering in the 
calculation of the backscattered signals. Computed results for the cases of randomly oriented 
equiaxed and elongated grains are also presented in this paper. 
 
Table 1. Material Properties 
 
Material 

11c  ( 2/ mN ) 12c  ( 2/ mN ) 44c ( 2/ mN ) ρ ( 3/ mkg ) 
Iron 21.6 1010×  14.5 1010×  12.9 1010×  7.86 310×  



THEORY 
 
Mean wave propagation 
 
The displacement field due to an ultrasonic wave propagating in a polycrystalline material can be 
described by the stochastic wave equation 
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where )(rC ijkl

�ξ  is the actual local elastic tensor, )(r�ξρ is the actual local density,  and )(ru i
�ξ is 

the actual displacement field in the medium ξ. The set of elastic tensors and the probability 
density function )(ξp , which is the probability of choosing any particular medium, form a 
stochastic process. In a medium with no density variation, the application of the unified theory of 
Stanke and Kino [3] to the wave equation yields the generalized following Christoffel's equation 
for the expected propagation constant k. 
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αγ  is a Green's function taken from the work of Lifshits and 

Parkhamovski [14], ijkl
oC  are the Voigt [15] averaged elastic constants, and )(sW �  represents the 

geometric autocorrelation function (the probability that two points, placed randomly in the 
material and separated by a displacement s� , fall in the same crystallite). Equation (2) describes 
the expected propagation constant k of plane waves of the form tirkik

i euau ω−−>=<
�.ˆˆ , where ω is 

the angular frequency and kkk ˆ=
�

 is the propagation vector in the direction of propagation k̂ . k 
is related to phase velocity pv and attenuation coefficient α through the relationship 

αω ivk p −= / . 
 
Equation (2) admits solutions for û only if the determinant of the matrix in brackets on the left-
hand side vanishes. In the absence of scattering, these occur for three distinct real values 
of 22 / kω ; one for each of the two quasi-shear waves and one for the quasi-longitudinal wave. In 
the presence of scattering, requiring the determinant to vanish defines a transcendental equation 
which may support many roots. The correct root was selected by seeking the real part of the root 
closest to the root in the absence of scattering and requiring that the imaginary part 0≥α . The 
wave polarizations are given by the corresponding eigenvectors. 
 
 



 
Particular Case for Calculations 
 
We have extended our previous calculations [10] for polycrystals of cubic symmetry to 
accommodate grain elongation in the z-direction.  Generalizing on Stanke and Kino [3], the 
geometric autocorrelation function )(sW �  is assumed to have the form [14] 
 

θ222 cos)1/(1/2)( −+−= hddesW �                                                                                                             (3) 
 
where d is the mean grain diameter in the plane perpendicular to the z-axis, h is the grain height 
along the z-direction, and θ is the angle measured with respect to the z-axis. Stanke and Kino 
pointed out the suitability of this choice when hd =  for real materials [4] and have used it in a 
previous publication [6,15]. It is to be noted that small values of d/h correspond to elongated 
(cigar shaped) grains, while large values correspond to flattened (pancake shaped) grains. As 
mentioned before, we shall present our calculations for expected propagation constants in 
polycrystalline materials with or without macroscopic texture. The particular texture considered 
in this work has the [001] crystallographic axes of all grains parallel to the z-axis of the 
laboratory coordinate system while the [100] and the [010] axes are randomly oriented about this 
direction. This simplifies the averaging procedure. Thus, if φ is the rotation of the [100] axis 
from the x-axis in the laboratory system, 
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Following the general procedure to obtain the complex propagations constants and polarizations 
as described before, we were able to develop an integral equation for the expected propagation 
constant for elastic waves propagating along arbitrary directions in the yz-plane. In order to do 
this, it was found convenient to rotate the laboratory coordinate system (x, y, z) by an angle θ 
about the x-axis resulting in a primed (x'=x, y', z') coordinate system and choose the z ′ -axis 
(direction 3) as the propagation direction. Waves with arbitrary propagation direction are, in 
general, not purely longitudinal or shear in a medium with macroscopic texture. However, for 
cubic crystals with small single crystal anisotropy 441211 2cccA −−=  compared to ijkl

oC , the 
deviations of the polarizations from those of pure modes are not expected to be large. Therefore, 
we have neglected the deviation of the polarizations from the pure mode values in the 
polycrystalline aggregate under consideration. With this assumption, we only need the averages 

>∆< 3333ε  and ][ 33333333
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Backscattered Ultrasonic Power 
 
The displacement field iu associated with time-harmonic elastic wave with angular 
frequency ω in a particular medium is given by 
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where )(rCijkl

�  is the actual local elastic tensor, )(r�ρ is the actual local density, and )(rui
� is the 

actual displacement field. We decompose the elastic constants and the displacement field in the 
following way 
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where )(ωijkl

oC  are frequency dependent “expected” elastic constants prescribed by some 
“suitable” theory and )(rui

�δ  is the fluctuation of the particle displacement relative to the mean 
value >< iu  in a statistically independent homogeneous medium. Obviously, the expected field 

>< iu  satisfies the following wave equation in a constant density medium. 
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Application of the decomposition specified in Equations (6) and (7) to equation (5) yields the 
following equation for the fluctuation field )(rui

�δ . 
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Equation (9) is intractable since the source term on the right hand side also contains the unknown 

)(rui
�δ . One can, however, seek an iterative solution. This is the approach we follow here. In an 

unbounded region, the first order iterative solution can then be written as 
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where )'( rrGim

�� −  is the Green's function for the average medium and the primed subscripts 
indicating differentiation with respect to the primed coordinate system. For mean plane waves of 
the form tirkik

i euau ω−−>=<
�.ˆˆ , application of Green's divergence theorem to the foregoing 

equation yields 
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The expected scattered power in a statistically homogeneous medium is then given by 
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Here )'( rrW ′′−��  represents the probability that two points, placed randomly in the material and 
separated by a displacement rr ′′−��' fall in the same crystallite and the superscript * represent 
complex conjugate. 
 
Simplified Calculation 
 
We have simplified the evaluation of backscattered signals indicated by Equation (12) by 
considering a polycrystal with randomly oriented and weakly scattering equiaxed grains. This 
allows us, at low frequencies, to employ the independent scatterer approximation. Following the 
approach of Gubernatis et. al. [25], the scattered field at r�  when |'| rr �� −  is large, is written as 
 

i

ri

i

ri

i B
r

eA
r

eru
βα

δ +=)(� ,                                                                                                            (13) 

 
where the vectors iA  and iB  are called the scattering amplitudes and α and β are the longitudinal 
and the transverse wave numbers, respectively, in the average attenuative medium. We choose 
this average medium to be described by the unified theory of Stanke and Kino. That is the 
complex )(ωijkl

oC  is given by 
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where ijklC  represent the Voigt averaged elastic constants. After some required manipulation, the 
expected backscattered power for a longitudinal wave propagating in the 3-direction can be 
written as 
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In the above equation, rdeS
v

ri �

�� 3.2)2( ∫= αα  is the shape factor of an individual grain. We define 
the backscatter coefficient as 
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where N is the number of grains per unit volume insonified by the incident ultrasonic wave. 
 



 
RESULTS 
 
Mean Propagation Constants for L-waves 
 
To obtain the attenuation per wavelength olk/α  and the normalized shift in phase velocity 

ololl vvv /)( −  for plane waves in the considered textured medium, the integral equation for the 
expected propagation constants, Equation (2), was solved numerically. Here and in what follows, 

ov and ok refer to phase velocity and wave number, respectively, based on Voigt averaged elastic 
constants in the absence of preferred grain orientation. The subscript ‘l’ associated with the 
Voigt averaged quantity refer to L-waves and meanv refers to mean grain volume. In the process, 
the single crystal elastic constants used for stainless steel [13] are listed in Table 1. 
 
Directional dependence of the normalized attenuation coefficient of L-waves propagating at an 
angle φ relative to the axis of rotational symmetry (z-axis) for 1)( 3/1 =meanol vk  is shown in Fig. 1.  
It is seen that when ultrasonic wave propagates along the preferred direction, there is no 
attenuation at all. This is to be expected since the wave propagating in this direction does not see 
any acoustic mismatch from grain to grain. As φ increases from 0 degree to 90 degrees, the 
attenuation monotonously increases. However, it is to be noted that the grain elongation affects 
the attenuation in a more complex way. Figure 2 shows the directional dependence of the 
normalized variation of phase velocity for 1)( 3/1 =meanol vk  and for five different grain aspect 
ratios. Grain shape is seen to have no effect on phase velocity when �45≤ϕ . For �45>ϕ , grain 
shape again affects the phase velocity in a complex way. 
 
Fig. 3 shows the dependence of the normalized attenuation coefficient olk/α  for L-waves in 
untextured iron on the normalized frequency 3/1)( meanol vk  for different grain aspect ratios d/h. At 
very low frequencies ( Rayleigh frequency regime), for the same mean grain volume, attenuation 
per wavelength is hardly affected by grain elongation. Careful observation of Fig. 4 however 
reveals that elongation in the direction perpendicular to the wave propagation direction causes 
slightly greater attenuation. It is also seen that in the stochastic region where )1()( 3/1 Ovk meanol = , 
deviation from the non-spherical shape of the grains decreases the attenuation. Looking back at 
Fig. 3, we observe that grain elongation delays the transition to the “geometric” frequency 
regime where attenuation varies inversely as 3/1)( meanv . It is clear that in the “stochastic-
geometric” transition regime, slender grains cause more attenuation than the more flattened 
grains. This is consistent with the intuitive notion that when ultrasonic waves behave as rays, 
slender grains having more projected area, remove more energy from the beam through 
reflection at the grain boundaries. 
 
In Fig. 5, we have plotted the normalized shift in phase velocity ololl vvv /)( −  in texture free iron 
against the normalized frequency 3/1)( meanol vk  for L-waves with d/h as a parameter. In this case 
we observe that, at low frequencies, the acoustic wave becomes increasingly dispersive with 
grain elongation. In the entire frequency regime considered here, it is observed that grains 



flattened in the direction of mean propagating wave are less dispersive. The complicated 
behavior of the phase velocities for different grain shapes when 10)( 3/1 ≥meanol vk  is believed to 
be associated with differing “Rayleigh-stochastic-geometric” transition regimes. 
  
 
Backscatter Coefficient for L-waves 
 
Using Equation (16), we have calculated the backscattered coefficient for ultrasonic wave 
propagation in texture free iron with elongated grains. The material properties of the chosen 
medium are listed in Table 1.  Figure 6 shows the frequency dependence of the computed 
backscatter coefficients using the averaged elastic constants extracted from the unified theory of 
Stanke and Kino [3]. It is seen that at low frequencies, the slender grains scatter more energy 
backwards than the flatter grains. For slightly higher frequencies, in the “stochastic” frequency 
regime, the shape dependence becomes more complicated and not completely understood by the 
author. Figure 7 compares the predictions based on Voigt averaged medium and the lossy 
expected medium. At low frequencies both the representations of the average medium yield the 
same result. 
This is to be expected since the incident beam is not significantly scattered in the medium at 
these frequencies. As the normalized frequency 3/1)( meanol vk  increases, effects of some degree of 
multiple scattering begin to appear. Some of the early-time scattered signals due to the grains are 
further scattered back to the observation point, thereby increasing the backscatter coefficient. 
 
 
CONCLUDING REMARKS 
 
We have applied the unified theory of Stanke and Kino [3] to determine the propagation 
constants in a textured polycrystalline material with elongated grains where the crystallites have 
cubic symmetry. We have presented computed ultrasonic wave propagation characteristics in 
two different mediums: 1) [001] aligned stainless steel and 2) iron with randomly oriented 
grains. Our numerical results show that the attenuation is largely controlled by grain volume. The 
predominant effect of grain shape is to alter the onsets of the “Rayleigh-stochastic” and the 
“stochastic-geometric” transition regimes and the extent of each of these frequency regimes. The 
effect of grain shape on phase velocity is also quite small. 
 
The simple scheme to account for some degree of multiple scattering in the computation of 
backscatter coefficient shows promise.  It must be reiterated that the formalism referred to in this 
paper does not restrict the calculation to be performed using independent scatterer 
approximation. We are currently in the process of performing more detailed evaluation of the 
formalism. 
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Figure1: Directional dependence of normalized attenuation in [001] aligned stainless steel; 
1)( 3/1 =meanol vk . 
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Figure 2: Directional dependence of normalized phase velocity in [001] aligned stainless steel; 
1)( 3/1 =meanol vk . 
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Figure 3: Frequency dependence of attenuation in untexured iron. 
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Figure 4: Frequency dependence of attenuation in untextured iron.  
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Figure 5: Frequency dependence of phase velocity in untexured iron. 
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Figure 6: Frequency dependence of backscatter coefficient in untexured iron. 
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